Template-free synthesis of hollow carbon-based nanostructures from MOFs for rechargeable battery applications

نویسندگان

چکیده

Hollow carbon-based nanostructures (HCNs) have found broad applications in various fields, particularly rechargeable batteries. However, the syntheses of HCNs usually rely on template methods, which are time-consuming, low-yield, and environmentally detrimental. Metal-organic frameworks (MOFs), constructed by organic ligands inorganic metal nodes, been identified as effect platforms for preparing without adding extra templates. This review summarized recent progress template-free synthesis enabled MOFs their Different strategies were introduced first with mechanistic insights into hollowing mechanism. Then electrochemical performances discussed highlight structure-function correlation. It is that built-in cavities nonporous critical importance to increase storage sites high capacity, enhance charge mass transport kinetics high-rate capability, ensure resilient electrode structure stable cycling. Finally, challenges opportunities regarding MOFs-derived batteries discussed.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Template-free hydrothermal synthesis of mesoporous MgO nanostructures and their applications in water treatment.

The controlled synthesis of Mg(OH)(2) nanowires and microflowers composed of nanoplates was successfully achieved by a template-free hydrothermal synthetic method. It was found that the reaction medium played a crucial role in the morphological control of the precursor nanostructures. The high polarity of water molecules favored the polar growth of the precursor, resulting in the formation of n...

متن کامل

Synthesis and characterization of electrospun molybdenum dioxide–carbon nanofibers as sulfur matrix additives for rechargeable lithium–sulfur battery applications

One-dimensional molybdenum dioxide-carbon nanofibers (MoO2-CNFs) were prepared using an electrospinning technique followed by calcination, using sol-gel precursors and polyacrylonitrile (PAN) as a processing aid. The resulting samples were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, Brunauer-Emmet-Teller (BET) surface area measur...

متن کامل

Vanadium Oxide Nanostructures for Lithium Battery Applications

Lithium and Lithium-ion batteries for portable electronic devices and hybrid electric vehicles have gained great importance for energy storage today. However, how to prepare cathode materials with higher energy density, high potentials, and longer cycle life is still a challenge. Compared with commercial LiCoO2, vanadium oxides have higher specific capacity and interesting layered structures, w...

متن کامل

Conducting Polymer Nanostructures: Template Synthesis and Applications in Energy Storage

Conducting polymer nanostructures have received increasing attention in both fundamental research and various application fields in recent decades. Compared with bulk conducting polymers, conducting polymer nanostructures are expected to display improved performance in energy storage because of the unique properties arising from their nanoscaled size: high electrical conductivity, large surface...

متن کامل

Template-Free Synthesis of Interconnected Hollow Carbon Nanospheres for High-Performance Anode Material in Lithium-Ion Batteries

The ever-increasing demand for rechargeable batteries in some newly emerging portable electronic devices, advanced medical devices, and in particular, electric vehicles and hybrid electric vehicles has sparked research efforts in developing lithium ion batteries (LIBs) with high storage capacity and excellent rate performance. [ 1 ] Graphite, the mainstay of anode materials for commercialized L...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Science China-chemistry

سال: 2022

ISSN: ['1869-1870', '1674-7291']

DOI: https://doi.org/10.1007/s11426-022-1398-5